Semaine du 18 au 20 mai

Séance 1

Activité 1 : cahier de recherche

1. Complète le tableau de proportionnalité suivant

3		7,5	10,5
2	4		

2. Trouve x tel que :

$$\frac{x}{12} = \frac{5}{3}$$

$$\frac{2}{5} = \frac{3}{x}$$

$$\frac{4}{6} = \frac{x}{9}$$

$$\frac{4}{6} = \frac{x}{9} \qquad \qquad \frac{2}{x} = \frac{8}{27}$$

Activité 2 : cahier de bord partie géométrie

Objectif : Comprendre la notion de proportionnalité dans le triangle.

Exercice:

Calculer les côtés manquants. Les droites rouges sont parallèles au troisième côté du triangle.

Résumé de la visio:

copier

Énoncé du théorème de Thalès

Si les triangles *ABC* et *AMN* sont tels

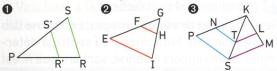
que: - *M* est sur [*AB*] - *N* est sur [*AC*] - (MN) // (BC) alors les longueurs des côtés des triangles sont proportionnelles.

La proportionnalité des longueurs des côtés peut s'exprimer de plusieurs manières.

1. Le tableau ci-dessous est un tableau de proportionnalité :

Triangle <i>ABC</i>	AB	AC	BC
Triangle	AM	AN	MN
AMN			

- **2.** Le triangle AMN est une réduction du triangle ABC. Le coefficient de réduction est égal à $\frac{AM}{AB}$ ou $\frac{AN}{AC}$ ou $\frac{MN}{BC}$.
- **3.** Le triangle ABC est un agrandissement du triangle AMN. Le coefficient d'agrandissement est égal à $\frac{AB}{AM}$ ou $\frac{AC}{AN}$ ou $\frac{BC}{MN}$.

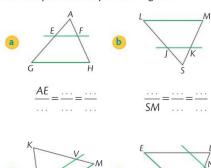

4.
$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$
. **C'est le théorème de Thalès**

5.
$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}$$
. C'est le théorème de Thalès

Activité 3 : cahier de bord partie géométrie

Exercice 1:

Sur les figures ci-dessous, les segments d'une même couleur sont parallèles.



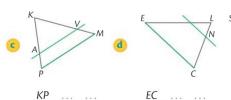
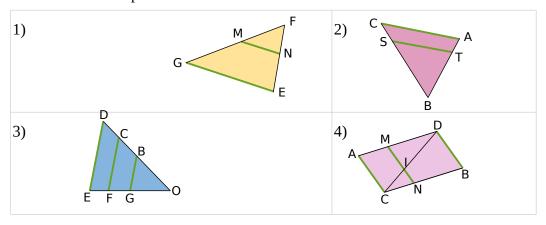

Reproduire et compléter le tableau ci-dessous.

	Figure	Triangles proportionnels	Droites parallèles	Égalité de rapports
	0	PR'S' et PRS	(S'R') et	$\frac{PS'}{PS} = \frac{PR'}{} = {SR}$
ľ	0	Mainanaga	er les fo	
	8		mary SE 1	


Exercice 2

2 Les droites vertes sont parallèles. Dans chaque cas, compléter les égalités.

Exercice 3 : Écris toutes les égalités des rapports de longueurs dans chacun des cas suivants. Les droites vertes sont parallèles.

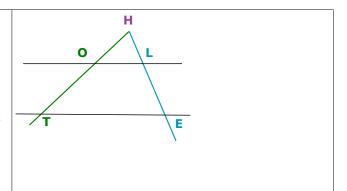
Séance 2

Activité 1 : cahier de recherche

Trouve x et y:
$$\frac{x}{12} = \frac{5}{4} = \frac{2}{y}$$
 $\frac{6}{x} = \frac{y}{4} = \frac{2}{3}$

Activité 2 : Cahier de bord partie géométrie

objectif : Utiliser le théorème de Thalès pour calculer des longueurs.


Exercice corrigé

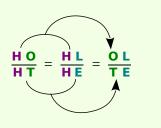
Sur la figure suivante, les droites (OL) et (TE) sont parallèles.

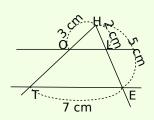
O et L appartiennent respectivement aux demidroites [HT) et [HL).

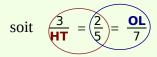
On donne HE = 5 cm, HL = 2 cm, TE = 7 cm et HO = 3 cm.

Calcule les longueurs HT et OL.

2 types de rédaction :

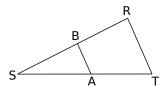

Dans le triangle HTE : O ∈ [HT], L ∈ [HE] et (OL) // (TE).
Le triangle HOL est une réduction du triangle HTE.


Le coefficient de réduction est : $\frac{HL}{HE} = \frac{2}{5}$


Le côté [HT] est homologue au côté [HO], donc HT=HO× $\frac{5}{2}$ = 3cm× $\frac{5}{2}$ =7,5cm

Le côté [OL] est homologue à [TE], donc OL= $\frac{2}{5}$ ×TE= $\frac{2}{5}$ ×7cm=2,8cm

2) Dans le triangle HTE : $O \in [HT]$, $L \in [HE]$ et (OL) // (TE), on peut utiliser le théorème de Thalès :

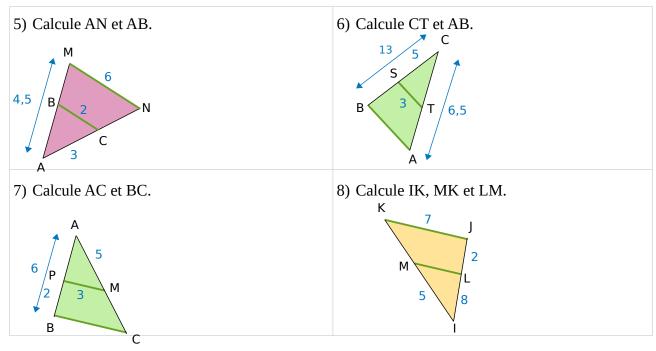


- D'une part, $2 \times HT = 3 \times 5$ soit $HT = 3 \times \frac{5}{2} = 7.5$ donc HT = 7.5 cm.
- D'autre part, $5 \times \mathbf{OL} = 2 \times 7$ soit $\mathbf{OL} = 2 \times \frac{7}{5} = 2.8$ donc $\mathbf{OL} = 2.8$ cm.

Activité 3 : Cahier de bord partie géométrie

Exercice 1 : guidé

Sur la figure ci-dessous, les droites (AB) et (TR) sont parallèles. On donne SA = 4 cm; ST = 15 cm; AB = 2.4 cm et SR = 7.5 cm.


- 1) Reporte les données sur un croquis.
- 2) Pour calculer SB et RT, recopie et complète :

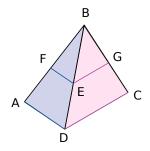
Dans le triangle ..., on sait que $A \in [ST]$, $B \in [...]$ et (AB) // (...) donc d'après le théorème de Thalès

$$\frac{SA}{...}=\frac{...}{SR}=\frac{...}{...}$$
 soit $\frac{4}{...}=\frac{...}{7,5}=\frac{...}{...}$. Termine la démonstration pour calculer SB et RT

Exercice 2:

Dans chacun des cas suivants, les droites vertes sont parallèles.

Exercice 3:


Construis un triangle ABC rectangle en B tel que AB = 4 cm; BC = 3 cm et AC = 5 cm. Sur la demi-droite [BA), place le point E tel que BE = 8.8 cm.

Trace la droite parallèle à (AC) passant par E, elle recoupe la droite (BC) en F.

- 1) Calcule EF.
- 2) Calcule BF.

Exercice 4:

Sur la figure ci-dessous : EF = 3 cm ; BG = 4 cm et GC = 2 cm. Les droites (FE) et (AD) sont parallèles et les droites (EG) et (DC) sont parallèles.

- 1) Calcule $\frac{BE}{BD}$
- 2) Déduis-en AD.